PHYSICO-CHEMICAL	PROPERTY - MELTING POINT
Test Substance	
Chemical Name	2-Acrylamido-2-methylpropanesulfonic acid, ammonium salt
CAS #	58374-69-9
Remarks	This substance is referred to as Ammonium AMPS@ in the test
	plan for the AMPS@ category
Method	
Method/Guideline	Testing was conducted as specified in Commission Directive
followed	92/69/EEC
Test Type	Melting Point
GLP (Y/N)	Y
Year (Study	1995
Performed)	
Remarks field for test	
conditions	• •
Results	
Data Quality	
References	OS 114452: Determination of General Physico-Chemical
Other:	
	· · · · · · · · · · · · · · · · · · ·
Method Method/Guideline followed Test Type GLP (Y/N) Year (Study Performed) Remarks field for test conditions Results Data Quality	plan for the AMPS@ category Testing was conducted as specified in Commission Directive 92/69/EEC Melting Point Y 1995 Melting point deter&nation was carried out using the Capillary Method/Melting Temperature Devices with Liquid Bath, Method A 1 of Commission Directive 92/69/EEC. The test material was determined to melt at 191°C with decomposition above 228°C. Reliable without restrictions – Klimisch Code 1

OPPINUL

PHYSICO-CHEMICAL PROPERTY - OCTANOL/WATER PARTITION COEFFICIENT	
Test Substance	
Chemical Name C A S #	2-Acrylamido-2-methylpropanesulfonic acid, ammonium salt 58374-69-9
Remarks	This substance is referred to as Ammonium AMPS® in the test. plan for the AMPS® category
Method	
Method/Guideline followed Test Type GLP (Y/N) Year (Study Performed) Remarks field for test conditions	Testing was conducted according to method A8 specified in Commission Directive 92/69/EEC Partition coefficient Y 1995 Octanol/water partition coefficient was determined by measuring the amount of test material (5 mg/L aqueous solution) that distributed into n-octanol (water-saturated) after 5 min of flask shaking at 22°C. Test material distributed into the n-octanol phase was measured using high performance liquid chromatography and UV detection.
Results	The octanol/water partition coefficient of the test material was determined to be 3.87×10^{-4} at 22° C. $Log_{10}P_{ow} = -3.41$
Data Quality	Reliable without restrictions - Klimisch Code 1
References	OS 114452: Determination of General Physico-Chemical Properties, SafePharm Laboratories LTD., 12/7/95.
Other:	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered trademark of The Lubrizol Corporation. The information contained in this robust summary may not be published, broadcast, rewritten or otherwise distributed without the prior written authority of The Lubrizol Corporation.

PHYSICO-CHEMICAL	PROPERTY - SOLUBILITY
Test Substance	
Chemical Name	2-Acrylamido-2-methylpropanesulfonic acid, ammonium salt
CAS #	58374-69-9
Remarks	This substance is referred to as Ammonium AMPS® in the test
	plan for the AMPS@ category
Method	
Method/Guideline [™]	Testing was conducted according to method A6 specified in
followed	Commission Directive 92/69/EEC
Test Type	Water solubility
GLP (Y/N)	Y
Year (Study	1995
Performed)	
Remarks field for test	Water solubility was determined by measuring the amount of
conditions	solid test article that distributed into distilled water after 17 hours
	of flask shaking at 20°C. The solubilized test material was
	measured using high performance liquid chromatography and UV
	detection.
Results	The water solubility of the test material was determined to be 761
	g/l at 20°C.
Data Quality	Reliable without restrictions - Klimisch Code 1
References	OS 114452: Determination of General Physico-Chemical
	Properties, SafePharm Laboratories LTD., 12/7/95.
Other:	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered
	trademark of The Lubrizol Corporation. The information contained in
	this robust summary may not be published, broadcast, rewritten or
	otherwise distributed without the prior written authority of The Lubrizol Corporation.
	Corporation.

PHYSICO-CHEMICAL	PROPERTY - PHOTODEGRADATION
Test Substance	
Chemical Name	2-Acrylamido-2-methylpropanesulfonic acid
CAS #	15214-89-8
Remarks	This substance is referred to as AMPS@ acid in the test plan for
	the AMPS@ category
Method	
Method/Guideline ""	EPIWIN (The Atmospheric Oxidation Potential (AOPWIN)
followed	module was used)
Test Type	Atmospheric Oxidation
GLP (Y/N)	N "
Year (Study	2000
Performed)	
Remarks field for test	EPIWIN. Estimation program Interface for Windows, Version 3.02.
conditions	Syracuse Research Corporation, Syracuse, NY, USA
	11 ON D
Results	The overall OH Rate Constant = 16.3284×10^{-12} cm-'/molecule-sec.
	Half life = 0.655 days (12-hr day; 1.5 x 10^6 OH/cm ³).
Data Oscalito	Reliable without restrictions - Klimisch Code 1
Data Quality	
References	Unpublished confidential business information
Other:	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered
	trademark of The Lubrizol Corporation. The information contained in
	this robust summary may not be published, broadcast, rewritten or
	otherwise distributed without the prior written authority of The Lubrizol Corporation.
	Corporation.

PHYSICO-CHEMICAL	PROPERTY - HYDROLYSIS
Test Substance	
Chemical Name	2-Acrylamido-2-methylpropanesulfonic acid
CAS #	15214-89-8
Remarks	This substance is referred to as AMPS@ acid in the test plan for
	the AMPS@ category
Method	
Method/Guideline	Potentiometric titration
followed	
Test Type	Hydrolysis
GLP (Y/N)	N
Year (Study	1978
Performed)	
Remarks field for test	The hydrolysis of AMPS monomer sod&n salt at pH=12 creates sodium
conditions	acrylate and B, B-dimethyltaurine. The hydrolysis was done at 50°C, with
	63 1 ppm 4-methoxyphenol and at 80°C with 506 ppm of 4-methoxyphenol. The hydrolysis was followed by potentiometric titration with perchloric acid
	in glacial acetic acid. Sodium acrylate, a strong base, and
	B, B-dimethyltaurine, a weak base were measured.
Results	At 50°C, there was only about 6% hydrolysis in 7 days. At 80°C, the
	half-life of the hydrolysis was about 5 days.
Data Quality	Reliable with restrictions - Klimisch Code 1
References	Unpublished confidential business information
Other:	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered
	trademark of The Lubrizol Corporation. The information contained in
	this robust summary may not be published, broadcast, rewritten or
	otherwise distributed without the prior written authority of The Lubrizol Corporation.
	Corporation.

PHYSICO-CHEMICAL	PROPERTY - HYDROLYSIS
Test Substance	
Chemical Name	2-Acrylamido-2-methylpropanesulfonic acid, sodium salt
CAS #	5 165-97-9
Remarks	This substance is referred to as Sodium AMPS® in the test plan
	for the AMPS@ category
Method	
Method/Guideline	Potentiometric titration
followed	
Test Type	Hydrolysis
GLP (Y/N)	N
Year (Study	1978
Performed)	
Remarks field for test	AMPS monomer is a strong acid. The hydrolysis of AMPS monomer at
conditions	pH=1 creates two weak acids, acrylic acid and ß, ß-dimethyltaurine.
	The hydrolysis was done at 50°C, with 63 1 ppm of 4-methoxyphenol to
	inhibit polymerization, and at 80°C with 506 ppm of 4-methoxyphenol.
	The hydrolysis was followed by the potentiometric titration of the
	solution with tetrabutylammonium hydroxide in t-butyl alcohol. Endpoints for both the strong acid, AMPS, and for the weak acids,
	acrylic acid and β , β -dimethyltaurine were observed. The degree of
	hydrolysis was calculated from the ratio of strong acid to weak acid.
Results	At 50°C, hydrolysis was negligible. At 80°C, the half-life of the
	hydrolysis was about 7 days.
Data Quality	Reliable with restrictions - Klimisch Code 1
References	Unpublished confidential business information
Other:	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered
	trademark of The Lubrizol Corporation. The information contained in
	this robust summary may not be published, broadcast, rewritten or
	otherwise distributed without the prior written authority of The Lubrizol
	Corporation.

PHYSICO-CHEMICAL	PROPERTY - FUGACITY
Test Substance	
Chemical Name	2-Acrylamido-2-methylpropanesulfonic acid
CAS#	15214-89-8
Remarks	This substance is referred to as AMPS@ acid in the test plan for
	the AMPS@ category
Method	
Method/Guideline	EQC (Equilibrium Criterion Model, Level 1)
followed	
Test Type	Fugacity
GLP (Y/N)	N
Year (Study	2000
Performed)	
Remarks field for test conditions	Mackay, et al. Evaluating the environmental fate of a variety of types of chemicals using the EQC Model. Environ. Toxicol. Chem. 15: 1627- 1637
D. I.	The FOCAL ALL AND CONTRACTOR AND CON
Results	The EQC level 1 model predicted that the AMPS@ acid is going to
	partition exclusively (100%) into the aqueous phase.
Data Quality	Reliable without restrictions - Klimisch Code 1
<u>References</u>	Unpublished confidential business information
Other:	Copyright 2000 The Lubrizol Corporation. AMPS@ is a registered
	trademark of The Lubrizol Corporation. The information contained in
	this robust summa y may not be published, broadcast, rewritten or otherwise distributed without the prior written authority of The Lubrizol
	Corporation.
	Corporation.

PHYSICO-CHEMICAL 1	PHYSICO-CHEMICAL PROPERTY - VAPOR PRESSURE	
Test Substance		
Chemical Name	2-Acrylamido-2-methylpropanesulfonic acid, ammonium salt	
CAS #	5 8374-69-9	
Remarks	This substance is referred to as Ammonium AMPS@ in the test	
	plan for the AMPS@ category	
Method		
Method/Guideline	Testing was conducted according to method A4 specified in	
followed	Commission Directive 92/69/EEC	
Test Type	Vapor pressure	
GLP (Y/N)	Y	
Year (Study	1995	
Performed)		
Remarks "field for test	Vapor pressure' was determined using a vapor pressure	
conditions	microbalance with measurements being made at several	
	temperatures. Linear regression analysis was used to calculate the	
	vapor pressure.	
Results	The vapor pressure of the test material was determined to be	
	7.4 x 10 ⁻⁹ Pa at 25°C	
Data Quality	Reliable without restrictions - Klimisch Code 1	
References	OS 114452: Determination of Vapor Pressure, SafePharm	
	Laboratories LTD., 10/16/95.	
Other:	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered	
	trademark of The Lubrizol Corporation. The information contained in	
	this robust summary may not be published, broadcast, rewritten or	
	otherwise distributed without the prior written authority of The Lubrizol Corporation.	
	Corporation.	

AQUATIC TOXICITY -	FISH
Test Substance	
Chemical Name CAS #	2-Acrylamido-2-methylpropanesulfonic acid, sodium salt 5165-97-9
Purity:	50% aqueous solution
Remarks	This substance is referred to as sodium AMPS@ in the test plan for
	the AMPS@ category
Method	NACO TO THE PROPERTY OF THE PR
Method/Guideline followed	"Methods for acute toxicitytests with fish, macroinvertebrates, and amphibians", EPA-660/3-75-009
Test Type	Static
GLP (Y/N)	Y
Year (Study	1983
Performed)	Physill (Languis maganachima)
Species/Strain/Supplier	Bluegill (Lepomis macrochirus) None
Analytical Monitoring	
Exposure Period (unit)	96 hours
Statistical Methods	LC50 values and associated confidence limits were calculated by using the computer program of Stephan et al. 1978. The statistical methods used included one of the following: moving average, probit analysis and binomial probability.
Remarks field for test conditions	Test Organisms: Source – In house laboratory supply (Lot # 83A13); Age- Juvenile; Length – 3.8 cm; Wet weight – 0.66 g; Loading rate – n/a; Pretreatment – none, fish were acclimated to the test conditions for 14 days prior to start of test
	Test System: The static acute test was conducted using nominal test concentrations of 130, 220, 360, 600 and 1000 mg/L. A stock solution (150 mg/ml) of the test substance was prepared and separately dispersed in each test vessel to yield the definitive test concentrations. The test was conducted glass exposure vessels that contained 15 L of test solution. 10 fish were used for each test concentration (no replicates were used). The test solution was not aerated and maintained on a photoperiod of 16 hours light and 8 hours darkness. The fish were not fed during the test
	Dilution Water: Source – soft water reconstituted from deionized water; Hardness Water adjusted to a hardness of 44 mg/L as CaC03; Alkalinity – 32 mg/L; Analysis – n/a; Water chemistry in test: DO (mg 02/L) – 5.5 to 9.2; pH 7.5; specific conductance – 140 μmhos/cm
	Test Temperature (°C) – 22 ± 1
	Test Levels: Control, 130, 220, 360, 600 and 1000 mg/L
Results	96-hour $LC50 = >1000 \text{ mg/L}$ based on nominal test
	concentrations
Remarks	Measured concentration: n/a

	Unit: mg/L
	96-hour LCO = 1000 mg/L
	Statistical results: 96-hour LC50 = >1000 mg/L. LCO (0 - 96 hours) = 1000 mg/L
	Other:
	Effect concentrations based on nominal loading rates
	• No mortality or sublethal effects were seen at the highest test concentration of 1000 mg/L.
Conclusions	96-hour LC50 = >1000 mg/L. 96-hour LCO = 1000 mg/L
Data Quality	Reliable with restrictions- Klimisch Code 2
	Acute Toxicity of OS # 489331" to Bluegill (Lepomis macrochirus).
References	Bionomics study # - 043-0983-H77- IOO; Bionomics report # B W-
	83-1 I-1491. EG&G Bionomics, November, 1983
Other:	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered trademark of The Lubrizol Corporation. The information contained in this robust summary may not be published, broadcast, rewritten or otherwise distributed without the prior written authority of The Lubrizol Corporation.

AQUATIC TOXICITY -	INVERTEBRATE
Test Substance	
Chemical Name CAS #	2-Acrylamido-2-methylpropanesulfonic acid, sodium salt 5 165-97-9
Purity: Remarks	50% aqueous solution This substance is referred to as sodium AMPS® in the test plan for the AMPS® category
Method	
Method/Guideline followed	"Methods for acute toxicity tests with fish, macroinvertebrates, and amphibians", EPA-660/3-75-009
Test Type GLP (Y/N)	Static V
Year (Study P&forme	
Species/Strain	Cladoceran, Daphnia magna
Analytical Monitoring	N/a
Exposure Period (unit) Statistical methods	48 hours EC50 values and associated confidence limits were calculated by using the computer program of Stephan et al. 1978. The statistical methods used included one of the following: moving average, probit analysis and binomial probability.
Remarks field for test conditions	Test species: Juvenile daphnids less than 24-hours old were produced from laboratory in-house culture.
	Test System: A stock solution (10 mg/ml) of the test substance was prepared in distilled water. An appropriate amount of the stock solution was then added to the appropriate amount of dilution water to yield 1000 ml. Each test solution was divided into 3 beakers to provide replicates containing 200 ml each. The test solution was not aerated during the exposure period. Daphnids were not fed during the test and maintained on a 16-hour light and 8-hour dark photoperiod. Dilution water: Well water was fortified according to the test protocol and filtered through a carbon filter and an Amberlite ZAD-7 resin column to remove any potential organic contaminants. The dilution water had a hardness of 160 - 180 mg/L as CaC03. Analysis — n/a; Water chemistry in test: DO- 7.8 – 9.3 mg/L; pH – 8.0 – 8.3; specific conductance – 400 - 600 μmhos/cm. Test Temperature ("C): 20 ± 1 Element: Immobilization/mortality Test Levels: Test concentrations included control, 130,220, 360, 600and 1000 mg/L. Fifteen daphnia were used per test group (5 per replicate).
Results Remarks	48-h EC ₅₀ = >1000 mg/L. 48-h EC ₀ = 1000 mg/L Measured concentration: n/a
	Unit: mg/L

	Other:
	Effect concentrations based on nominal loading rates.
	No mortality or sublethal effects were seen at the highest test
	concentration of 1000 mg/L
Conclusions	$48-h \ EC_{50} = >1000 \ mg/L. \ 48-h \ EC_0 = 1000 \ mg/L$
Data Quality	Reliable with restrictions- Klimisch Code 2
References	Acute Toxicity of OS # 48933F to Daphnia magna. Bionomics study # -
	043-0983- $H77-1$ IO; Bionomics report # B W-83-l I-14901. EG&G
	Bionomics, November, 1983
Other:	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered trademark
	of The Lubrizol Corporation. The information contained in this robust
	summary may not be published, broadcast, rewritten or otherwise distributed
	without the prior written authority of The Lubrizol Corporation.

Test Substance	
Chemical Name CAS #	2-Acrylamido-2-methylpropanesulfonic acid, sodium salt 5 165-97-9
Puritv: Remarks	50% aqueous solution This substance is referred to as sodium AMPS@ in the test plan for the AMPS@ category
Method Method/Guideline followed Test Type (aerobic/anaerobic) GLP (Y/N) Year (Study Performed)' Contact time (units) Inoculum Remarks for test conditions	The Evaluation of the biodegradation of test materials using the semi-continuous activated sludge method. (40 CFR 795.3340) Aerobic Y 1986 44 days Secondary activated sludge from domestic wastewater treatment plant. Inoculum: Four liters of secondary activated sludge were collected from a domestic wastewater treatment plant. Raw sewage collected from the primary settling tank was used as the influent during acclimation and test periods. Concentration of test chemical: From day 1 to 8, 20-mg carbon/L influent was introduced into the test unit. This was reduced to IO-mg carbon/L from day 8. No organic solvents were used to facilitate the dispersion of the test material. The test substance was weighed onto a teflon coupon and introduced into the medium Test Setup: Aeration units consisted of glass vessels with cone shaped lower ends. The units contain 150 ml of mixed liquor when filled. A drain hole is located at the 50 ml level to facilitate sampling and removal of effluent. The acclimation process included aeration for 23 hours, settling of sludge, removing 100 ml of supernatant and resuming aeration to 500 mg/minute. The units were fed raw sewage daily till a clear supernatant liquor was obtained. At the end of the acclimation period, sludge from all units was pooled and mixed. Adequate amount was added to each unit to achieve a suspended solids concentration of 1500 mg/L for each unit. One-mg carbon/100 ml influent was added to the appropriate test units. Blank units did not receive any test material. The study was extended to 44 days to determine if acclimation and biodegradation will increase in this time frame.

	Analytical method: DOC analysis was conducted after sparging the samples with nitrogen prior to analysis to remove soluble carbon dioxide.
	Method of calculating measured concentrations: N/A
	Other:
Results	
Degradation % after time	<10% after 44 days.
Kinetic (for sample, positive and	n/a
negative controls)	
Breakdown Products (Y/N) If	
yes describe breakdown products	
Remarks	
Conclusions	The test substance showed a low biodegradation rate (<10%) in
	28 days.
Data Quality	Reliable with restrictions- Klimisch Code 2
	Evaluation of the biodegradation of OS 69793F using the
References	modified SCAS methodfor Lubrizol Corporation. Ref: 86-0843-
	11; Hill Top Research Inc., Nov 12, 1986.
	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered
Other:	trademark of The Lubrizol Corporation. The information contained in this robust summary may not be published, broadcast, rewritten or
ouici.	otherwise distributed without the prior written authority of The Lubrizol
	Corporation.

AQUATIC TOXICITY - FISH		
Test Substance		
Chemical Name	2-Acrylamido-2-methylpropanesulfonic acid, ammonium salt	
	# 58374-69-g	
Purity:	50% aqueous solution	
Remarks	This substance is referred to as ammonium AMPS@ in the test plan for the AMPS@ category	
Method		
Method/Guideline followed		
Test Type	Static renewal (test media was renewed every 24 hours)	
GLP (Y/N)	Y	
Year (Study Performed)	1996	
Species/Strain/Supplier	Fathead minnow (Pimephales promelas)	
Analytical Monitoring	The concentration and stability of the test material in the test solutions were verified by HPLC analysis at 0, 24 and 96 hours. Analysis of the test solutions at 0, 24 and 96 hours showed the measured test concentrations to be near nominal and so the results are based on nominal test concentrations.	
Exposure Period (unit)	96 hours	
Statistical Methods	LC50 values and associated confidence limits were calculated by the moving average method of Thompson (1947). Thompson, W. R. Use of Moving Averages and Interpolation to Estimate Median-Effective Dose. BACT Reviews, 11, pages 115-145.	
Remarks field for test conditions	Test Organisms: Source – Neil Hardy Aquatica, Carshalton, Surrey, UK; Age- Juvenile; Length – 3.8 cm; Wet weight – 0.54 g; Loading rate – 0.27 g/L; Pretreatment – none, fish were acclimated to the test conditions for 12 days prior to start of test	
	Test System: The static acute test was conducted using nominal test concentrations of 200, 360, 640, 1120 and 2,000 mg/L. The test substance was separately dispersed in 20 litres of dechlorinated tap water to yeild the definitive test concentrations. The test was conducted glass exposure vessels that contained 20 L of test solution. 10 fish were used for each test concentration (no replicates were used). The test vessels were convered to reduce evaporation and maintained on a photoperiod of 16 hours light and 8 hours darkness. The test vessels were aerated via narrow bore glass tubes. Test media were renewed daily. The fish were not fed during the test	
	Dilution Water: Source – Dechlorinated tap water; Hardness – Water adjusted to a hardness of 100 mg/L as CaC03; Analysis – Water was free of measurable quantities of pesticides; Water chemistry in test: DO (mg 02/L) – 8.2 to 8.5; pH – 7.4 to 7.7	
	Test Temperature (°C) - 21 .0.	
	Test Levels: Control, 200, 360, 640, 1120 and 2,000 mg/L	
Results	96-hour LC50 = 1400 mg/L based on nominal test concentrations	
Remarks	Measured concentration: Analysis of the test solutions at 0, 24 and 96	

	hours showed the measured test concentrations to be near nominal as shown below:				
	O-hour 24-hour 96-hour				
	(% of nominal) (% of nominal)				
	Control <loq <loq="" <loq<="" th=""></loq>				
	200 mg/L 100 99 103				
	360 mg/L 102 105 101				
	640 mg/L 101 99 102				
	1120 mg/L 101 100 102				
	2000 mg/L 103 102				
	Where LOQ = Limit of quantitation				
	Unit: mg/L				
	96-hour LCO = 640 mg/L				
	Statistical results: 72 and 96-hour $LC50 = 1400 \text{ mg/L}$. 95% CL				
	(1300-1600) mg/L.				
	Other:				
	Effect concentrations based on nominal loading rates				
	No insoluble material was noted Only to the control of the c				
	• Sublethal effects including loss of equilibrium was seen at 96				
	hours in 1120 mg/L test concentration and after 3 hours in the				
	2000 mg/L test concentration.				
Conclusions	72 and 96-hour LC50 = 1400 mg/L . 96-hour LCO = 640 mg/L				
Data Ossalitas	Poliable without vectoristics Vlimingh Code I				
Data Quality	Reliable without restrictions- Klimisch Code I				
References	OS 114454: Acute toxicity to Fathead minnow (pimehales promelas). SPL Project Number: 525/049. SafePharm Laboratories Limited.				
Keterences	May 2, 1996				
	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered trademark				
Othorn	of The Lubrizol Corporation. The information contained in this robust				
Other:	summary may not be published, broadcast, rewritten or otherwise distributed				
	without the prior written authority of The Lubrizol Corporation.				

AQUATIC TOXICITY -	INVERTEBRATE
Test Substance	
Chemical Name	2-Acrylamido-2-methylpropanesulfonic acid, ammonium salt
CAS #	58374-69-9
Purity:	50% aqueous solution
Remarks	This substance is referred to as ammonium AMPS@ in the test plan for
	the AMPS' category
Method	
Method/Guideline followed	OECD #202 (1984)
	Static acute toxicity test
GLP (Y/N)'	Ÿ
Year (Study Performed)	1996
Species/Strain	Cladoceran, Dapbnia magna
Analytical Monitoring T	he concentration and stability of the test material in the test solutions
	were verified by HPLC analysis at 0 and 48 hours. Analysis of the test
	solutions at 0 and 48 hours showed the measured test concentrations to
	be near nominal and so the results are based on nominal test
B	concentrations.
Exposure Period (unit)	48 hours
Statistical methods	EC50 values and associated confidence limits were calculated by the
	moving average method of Thompson (1947). Thompson, W. R. Use
	of Moving Averages and Interpolation to Estimate Median-Effective Dose. BACT Reviews, 11, pages 115-145.
Remarks field for test	Test species: Juvenile daphnids less than 24-hours old were produced
conditions	from laboratory in-house culture.
Conditions	Test System: The test material was prepared by direct dispersion in
	reconstituted water to give a 4000 mg/L stock solution from which
	dilutions were made in reconstituted water to prepare the test series. A
	250-mL glass beaker that contained 200 mL of test solution was used
	per treatment. The test solution was not renewed during the exposure
	period. The test vessels were loosely covered to reduce entry of dust,
	etc. Daphnids were not fed during the test.
	Dilution water: The dilution water had a hardness of 270 mg/L as
	CaC03. Water chemistry in test: DO (mg 02/L) - 7.9 to 8.4; pH - 7.3
	to 7.6.
	Test Temperature (°C) – 2 1 .0.
	Element: Immobilization/mortality
	Test Levels: Test concentrations included control, 36, 64, 112, 200,
	360, 640, 1120, 2000 and 3600 mg/L. Ten daphnia were used per test
	group and each test included replicate vessels.
Results	$48-h \ EC_{50} = 1200 \ mg/L. \ 48-h \ EC_0 = 640 \ mg/.$
'Remarks	Measured concentration: Analysis of the test solutions at $\overline{0}$ and 48
	hours showed the measured test concentrations to be near nominal as
	shown below:

		0-hour	24-hour
		(% of nominal)	(% of nominal)
	Control	<loq< th=""><th><loq< th=""></loq<></th></loq<>	<loq< th=""></loq<>
	36 mg/L	93	95
	112 mg/L	95	96
	360 mg/L	96	100
	1120 mg/L	97	98
	3600 mg/L	98	99
	Where LOQ =	Limit of quantitation	
		entrations based on nor	J
	• Control resp	onse was satisfactory	(100% survival and no sublethal
Conclusions	,	0 mg/L. 48-h EC,, = 6	540 mg.
Data Quality	Reliable without	restrictions- Klimisch	Code I
References			magna. SPL Project Number: mited. April 30, 1996
Other:	of The Lubrizol C summary may not	orporation. The informat	AMPS® is a registered trademark ion contained in this robust rewritten or otherwise distributed Lubrizol Corporation.

ENVIRONMENTAL FAT	TE - BIODEGRADATION
Test Substance	
Chemical Name CAS #	2-Acrylamido-2-methylpropanesulfonic acid, ammonium salt 58374-69-9
Purity: Remarks	50% aqueous solution This substance is referred to as ammonium AMPS® in the test plan for the AMPS@ category
Method	
Method/Guideline followed 'Test Type (aerobic/anaerobic) GLP (Y/N) Year (Study Performed) Contact time (units) Inoculum	OECD 301B Aerobic Y 1996 2 8 days. Return activated sludge from domestic wastewater treatment plant.
Remarks for test conditions	Inoculum: The sludge was aerated and stirred for 2 hrs in a flask, homogenized in a Waring blender at low speed for 2 minutes and let stand for 1 hour. The supernatant from the homogenized activated sludge was used as inoculum. The bacterial count in the supernatant was estimated using the Easicult dip-slide. The microbial level in the test mixture was 10,000 cells/mL
	Concentration of test chemical: A known concentration of test substance was added to the mineral medium, giving at least 30 mg ThOD per L medium. No organic solvents were used to facilitate the dispersion of the test material. The test substance was weighed onto a teflon coupon and introduced into the medium
	Test Setup: Seven flasks were used for the test substance, reference and controls. Each test vessel was connected to a series of 3 absorption bottles, each containing 100 mg of 0.0125 M (0.025N) barium hydroxide solution. The test was started by bubbling CO2-free air through the suspensions at a rate of 50 to 100 ml/min. The test vessels were covered with aluminum foil during the test period to prevent algal growth and photodegradation of test materials.
	Sampling frequency: During the first 10 days, the analysis of CO2 was made every 2-3 days and then approximately every 5" day until the 28th day. CO2 evolution from the test suspensions and inoculum blanks was followed in parallel.
	Controls: Yes; blank and positive controls (sodium benzoate), abiotic and toxicity checks were included. Sodium benzoate was used as the positive control
	Analytical method: For measurement of evolved C02, the barium hydroxide absorber closest to the test vessel was disconnected and titrated with 0.1M HCl using phenolphthalein as the indicator.

	Method of calculating measured concentrations: N/A
	Other:
Results	
Degradation % after time	3.3% after 28 days.
Kinetic (for sample,	Reference (sodium benzoate) -> 60% degradation in 4 days achieving
positive and negative	a total of 93% in 28 days
controls)	Abiotic degradation - 4.99% in 28 days, indicating insignificant
	physiochemical degradation of the test substance
	Toxicity check - Combined degradation of 48% for the reference and
	test substances, indicating the test substance was not toxic to the
	microbial populations in the inoculum.
Breakdown Product	s (Y/N) N
If yes describe breakdown	
products	
R e m	
Conclusions	The test substance showed a low biodegradation rate (3.3%) in 28
	days. The reference substance, sodium benzoate, reached a level of 93% in the same test period.
Data Ovalitu	Reliable without restrictions- Klimisch Code I
Data Quality	
Pafaranaas	OS 114454: Biodegradability study of test substance OS 114454 using the OECD CO2 evolution (Modified Sturm) test. Document NO. 65-
References	95-0199-BC-001, Ricerca Inc. June 18, 1996.
	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered trademark
	of The Lubrizol Corporation. The information contained in this robust
Other:	summary may not be published, broadcast, rewritten or otherwise distributed
	without the prior written authority of The Lubrizol Corporation.

AQUATIC TOXICITY -	ALGAE
Test Substance	
Chemical Name CAS #	2-Acrylamido-2-methylpropanesulfonic acid, ammonium salt 58374-69-9
Purity:	50% aqueous solution
Remarks	This substance is referred to as ammonium AMPS@ in the test plan for the AMPS' category
Method	
Method/Guideline followed	OECD 20 1 (1984)
Test Type	Static acute toxicity test
GLP (Y/N)	Y
Year (Study Performed)	' 1996
	Freshwater alga& Selenastrum capricornutum
Element basis (# of	10,000 cells/mL
cells/ml)	,
· ·	96 hours
Analytical monitoring	'The concentration and stability of the test material in the test solutions
That y treat monitoring	were verified by HPLC analysis at 0 and 96 hours. Analysis of the test
	solutions at 0 and 96 hours showed the measured test concentrations to
	be near nominal and so the results are based on nominal test concentrations.
Statistical methods	Statistical analysis of the area under the growth curve data was carried out for the control and 2000 mg/L test groups using Students t-test.
Remarks field for test conditions	Test Species: Cells taken from a log-growth phase in-house culture of Selenastrum capricornutum that was originally obtained from the Culture Centre for Algae and Protozoa (CCAP), Institute of Freshwater Ecology, Ferry House, Ambleside, Cambia.
	Test System: A limit test was conducted at a test concentration of 2000 mg/L. The test material was prepared by a direct dispersion in culture medium and volume adjusted to give a 4000 mg/L stock solution. An aliquot of the stock solution was mixed with 500 ml of algal suspension to give the test concentration of 2000 mg/L. Test Conditions: Six 250-ml conical flasks containing 100-mL of solution were prepared for the treatment group and 3 flasks were used for the control. At study initiation, the culture contained nominal cell
	density of -10,000 cells/ml. The flasks were covered with aluminum foil and incubated at 24 + 1°C, and constantly shaken at 100 rpm for 96 hours. Samples were taken at 0, 24, 48, 72 and 96 hours and the absorbance measured at 665 nm. Daily cell counts were made concurrently with a hemocytometer to confirm that the absorbance values were sufficiently well correlated with cell density values.
	Light: Cool-white fluorescent lights provided a light intensity of ~ 7000 lux under continuous illumination.
	Test temperature(°C) – 24 ± 1

	Shaker bed	speed (rpm)): 100			
	Dilution Water: Sterile enriched alga growth media adjusted to pH 8.0. pH ranged from 8.0 - 8.1 at O-hour and 10.0 - 10.2 after 96 hours.					
	Test Levels:	Test Levels: Control (3 replicates) and 2000 mg/L (6 replicates)				olicates)
Results	Nominal cond	centrations: 7	72-h and 96-l	$\frac{\text{and } 2000 \text{ f}}{\text{h } \text{EL}_{50}\text{s}} = 2$	2000 mg/L	for both
1054115	biomass and			·· • • • • • • • • • • • • • • • • • •	2000 1116/12	101 00111
Remarks	The growth			orbance valu	ies as they	correlated
	well with cel	1 density. Th	ne mean cell	density and	absorbance	values in
	the control a	nd absorbanc	ce values in	the test cond	centration ar	e shown
	below:					
		0 hour	24 hour	48 hour	72 hour	96 hour
		o nour	24 11001	40 HOUI	/2 nour	70 nour
	Control	1.23×10^4	1.08 x 10'	1.81 x 10 ⁵	3.33×10^{3}	1.51 x 10°
	(cells/ml)					
	Control	0.022	0.100	0.220	0.529	1.074
	Absorbance					
	Test Conc.	0.022	0.101	0.232	0.523	1.112
	(2000 mg/L)					
	Measured co	ncentration:	Analysis of	the test solu	tions at 0 a	nd 96
	hours showed		ed test conce	entrations to	be near nor	ninal as
	shown below	shown below:				
	O-hour 96-hour (% of nominal)					
	Control	-			(% of nom < LOQ	
	Control Treatment (R	1 _ D3)	9	OQ 6	100	
	,				100	
	Treatment (R4 – R6) 97 102 Where LOQ = Limit of quantitation					
	Unit: mg/L					
	There were statistically no significant differences (P \geq 0.05), between the control and 2000 mg/L test groups and therefore the no observed effect concentration (NOEC) is given as \geq 2000 mg/L.					
	Other:					
	Control response was satisfactory.					
<u>Conclusions</u>		No effects to algae growth or biomass was seen at the test concentration at 2000 mg/L.				
Data Quality	Reliable with			h Code I		
References					Number: 52	5/046
Acjerences	OS 114454: Algal Inhibition Test. SPL Project Number: 525/046. SafePharm Laboratories Limited. May 1, 1996					
Other:	Copyright 2000 of The Lubrize summary may without the pr	0 The Lubrizo ol Corporation not be publis	l Corporation 1. The informa hed, broadcas	. AMPS® is ation containe st, rewritten c	ed in this rol or otherwise	pust

AQUATIC TOXICITY -	FISH
Test Substance	
Chemical Name	2-Acrylamido-2-methylpropanesulfonic acid
	15214-89-8
	99.85%
Remarks	This substance is referred to as AMPS® acid in the test plan for the
Remarks	AMPS@ category
Method	
Method/Guideline followed	"Methods for acute toxicity tests with fish, macro&vertebrates, and amphibians", EPA-66013-75-009
Test Type	Static
GLP (Y/N)	Y
Year (Study Performed)	1983
Species/Strain/Supplier	Bluegill (Lepomis macrochirus)
Analytical Monitoring	None
Exposure Period (unit)	96 hours
Statistical Methods	LC50 values and associated confidence limits were calculated by using the computer program of Stephan et al. 1978. The statistical methods used included one of the following: moving average, probit analysis and binomial probability.
Remarks field for test conditions	Test Organisms:. Source In house laboratory supply (Lot #83A13); Age- Juvenile; Length - 3.8 cm; Wet weight - 0.66 g; Loading rate - n/a; Pretreatment - none, fish were acclimated to the test conditions for 14 days prior to start of test
	Test System: The static acute test was conducted using nominal test concentrations of 130,220, 360, 600 and 1000 mg/L. A stock solution (150 mg/ml) of the test substance was prepared and separately dispersed in each test vessel to yield the definitive test concentrations. The test was conducted glass exposure vessels that contained 15 L of test solution. 10 fish were used for each test concentration (no replicates were used). The test solution was not aerated and maintained on a photoperiod of 16 hours light and 8 hours darkness. The fish were not fed during the test
	Dilution Water: Source – soft water reconstituted from deionized water; Hardness – Water adjusted to a hardness of 44 mg/L as CaC03; Alkalinity – 32 mg/L; Analysis – n/a; Water chemistry in test: DO (mg 02/L) 5.5 to 9.2; pH 7.5; specific conductance – 140 µmhos/cm
	Test Temperature (°C) – 22 ± 1
	Test Levels: Control, 130, 220, 360, 600 and 1000 mg/L
Results	96-hour LC50 = 170 mg/L based on nominal test concentrations
Remarks	Measured concentration: n/a
	Unit: mg/L

	96-hour LCO = 130 mg/L Statistical results: 72 and 96-hour LC50 = 170 mg/L. 95% CL (130 - 220) mg/L. LCO (0 - 96 hours) = 130 mg/L
	Other: • Effect concentrations based on nominal loading rates • Sublethal effects including loss of equilibrium and rapid respiration was seen at 0 hours in the 600 and 1000 mg/L test concentration.
Conclusions	72 and 96-hour LC50 = 170 mg/L. 96-hour LCO = 130 mg/L
Data Quality	Reliable with restrictions- Klimisch Code 2
References	Acute toxicity of OS # 26935F to Bluegill (Lepomis macrochirus). Toxicity test report submitted to Lubrizol Corporation. Bionomics Study # 043-0983-H76- IOO; Bionomics Report # B W-83-l I - 1492. EG&G Bionomics, November, 1883.
Other:	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered trademark of The Lubrizol Corporation. The information contained in this robust summary may not be published, broadcast, rewritten or otherwise distributed without the prior written authority of The Lubrizol Corporation.

AQUATIC TOXICITY -	INVERTEBRATE
Test Substance	
Chemical Name	2-Acrylamido-2-methylpropanesulfonic acid
	15214-89-8
	99.85%
Remarks	This substance is referred to as AMPS@ acid in the test plan for the
Remains	AMPS@ category
Method	Thin b c value gold
Method/Guideline followed	"Methods for acute toxicity tests with fish, macroinvertebrates, and
Wethod/Guideline Tollowed	amphibians", EPA-660/3-75-009
Test Type	the control of the co
$\frac{1 \operatorname{GLP}}{\operatorname{GLP}} \frac{1 \operatorname{YPC}}{(Y/N)}$	Y
Year (Study Performed).	
Species/Strain	
-	, 1
Analytical Monitoring	n/a
Exposure Period (unit)	48 hours
Statistical methods	EC50 values and associated confidence limits were calculated by using
	the computer program of Stephan et al. 1978. The statistical methods
	used included one of the following: moving average, probit analysis
	and binomial probability.
Remarks field for test	Test species: Juvenile daphnids less than 24-hours old were produced
conditions	from laboratory in-house culture.
	Test System: A stock solution (10 mg/ml) of the test substance was
	prepared in distilled water. An appropriate amount of the stock
	solution was then added to the appropriate amount of dilution water to
	yield 1000 ml. Each test solution was divided into 3 beakers to
	provide replicates containing 200 ml each. The test solution was not
	aerated during the exposure period. Daphnids were not fed during the
	test and maintained on a 16-hour light and 8-hour dark photoperiod.
	Dilution water: Well water was fortified according to the test protocol
	and filtered through a carbon filter and an Amberlite ZAD-7 resin
	column to remove any potential organic contaminants. The dilution
	water had a hardness of 160 - 180 mg/L as CaC03. Alkalinity: 110 -
	130 mg/L; Analysis -n/a; Water chemistry in test: DO- 7.9 - 9.5
	mg/L; pH 7.9 8.3; specific conductance 400 - 600 μmhos/cm.
	Test Temperature (°C): 20 ± 1
	Element: Immobilization/mortality
	Test Levels: Test concentrations included control, 78, 130, 220,
	360, 600and 1000 mg/L. Fifteen daplmia were used per test
	group (5 per replicate).
Results	48-h $EC_{50} = 340 \text{ mg/L}$. 48-h $EC_0 = 78 \text{ mg/.}$
Remarks	Measured concentration: n/a
Remarks	reasured concentration, ii/a
	Unit: mg/L

	Other:
	Effect concentrations based on nominal loading rates.
	Control response was satisfactory (100% survival and no sublethal
	effects).
Conclusions	48-h $EC_{50} = 340 \text{ mg/L}$. 95% Confidence limits = (280 - 430) mg/L.
	$ 48-h \ EC_0 = 78 \ mg/L$
Data Quality	Reliable with restrictions- Klimisch Code 2
References	Acute toxicity of OS # 26935F to Daphnia magna. Toxicity test report
	submitted to Lubrizol Corporation. Bionomics Study # 043-0983-H76-
	1 IO; Bionomics Report # B W-83- 11 - 1489. EG&G Bionomics,
	November, 1883.
Other:	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered trademark
	of The Lubrizol Corporation. The information contained in this robust
	summary may not be published, broadcast, rewritten or otherwise distributed
	without the prior written authority of The Lubrizol Corporation.

Test Substance	
Chemical Name	2-Acrylamido-2-methylpropanesulfonic acid 15214-89-8
Purity: Remarks	99.85% This substance is referred to as AMPS® acid in the test plan for the AMPS@ category
Method/Guideline followed Test Type (aerobic/anaerobic) GLP (Y/N) Year (Study Performed) Contact time (units) Inoculum Remarks for test conditions	The Evaluation of the biodegradation of test materials using the semi-continuous activated sludge method. (40 CFR 795.3340) Aerobic Y 1986

	Analytical method: DOC analysis was conducted after sparging the samples with nitrogen prior to analysis to remove soluble carbon dioxide.
	Method of calculating measured concentrations: N/A
	Other:
Results	
Degradation % after time	<10% after 44 days.
Kinetic (for sample, positive and	n/a
negative controls)	
Breakdown Products (Y/N) If	N
yes describe breakdown products	
Remarks	
Conclusions	The test substance showed a low biodegradation rate (<10%) in 28 days.
Data Quality	Reliable with restrictions- Klimisch Code 2
References	Evaluation of the biodegradation of OS 61349E using the modified SCAS method for Lubrizol Corporation. Ref: 86-0844-I I; Hill Top Research Inc., Nov 1 I, 1986.
Other:	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered trademark of The Lubrizol Corporation. The information contained in this robust summary may not be published, broadcast, rewritten or otherwise distributed without the prior written authority of The Lubrizol Corporation.

ACUTE TOXICITY - ORAL	
Test substance	2-Acrylamido-2-methylpropanesulfonic acid
CASRN:	15214-89-s
Purity:	99.85%
Remarks	This substance is referred to as AMPS@ acid in the test plan for
	the AMPS@ category
Method	OECD 401
Type:	Acute oral toxicity study in rats
GLP:	Yes
Year:	1 9 8 1
Species:	Rat'
Strain:	Sherman-Wistar
Route of administration:	Oral
Dose levels:	500, 1000, 2000, 4000 and 8000 mg/kg
Sex and number/group:	5 male rats per treatment group
Frequency of treatment:	Single oral gavage
Duration of test:	14 day observation post-treatment
Control group:	No negative control group
Result	LD50 = 1830 mg/kg (Confidence Limits = 990-3390
	mg/kg)
Remark:	Five groups of five male rats of the Sherman-Wistar strain weighing between 200-300 grams were employed in this study. The rats were deprived of food but not water overnight prior to dosing. Each animal was weighed and given a single dose by direct administration of the experimental material in to the stomach by means of a syringe and dosing needle. The sample was dosed as a 50% w/v suspension in water. The following dosages were administered: 500 mg/kg, 1000 mg/kg, 2000 mg/kg, 4000 mg/kg and 8000 mg/kg. Following administration the animals were allowed food and water <i>ad libitum</i> for the 14-day observation period during which time the animals were observed for signs of toxicity and mortality. At the lowest dose tested, the animals were lethargic and ruffled after 2 hours. Their condition appeared essentially unchanged after 24 hours. The rats appeared normal within 48 hours. No unscheduled deaths occurred in this group. Animals receiving 1000 mg/kg were lethargic, ruffled and drooling after 1 hour. They were severely depressed after 3 hours. Deaths occurred in 2 animals after 4 hours. The surviving animals were semi-comatose after 24 hours. These animals remained moribund for the next 2-3 days during which time an additional death occurred. The two remaining animals in this group recovered after day 7-8. Animals receiving 2000 mg/kg were lethargic, ruffled and drooling after 30 minutes.

	They were severely depressed after 2 hours. Three animals
	•
	died 3 hours after dosing. The surviving animals remained
	severely depressed or semi-comatose for several days
	before recovery at 7-9 days. Animals receiving 4000 mg/kg
	were severely depressed, ruffled and drooling 30 minutes
	after administration of the test article. Two animals died
	after 3 hours. The remaining animals were semi-comatose
	for the next 72 hours, with additional two animals expiring
	on days 3 and 4. The sole surviving animal recovered by
	day 9. All animals receiving 8000 mg/kg died within 15
	minutes of test material administration. No remarkable
	gross pathological findings were observed. The LD50 was
	calculated employing the Thompson moving average
	method as modified by Weil.
Reference	Summary of results of acute toxicology studies: OS61349,
	Biosearch Inc., 4/28/81.
Data Quality	Valid without restriction - (Klimisch Code 1)
Other	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered
	trademark of The Lubrizol Corporation. The information contained in
	this robust summary may not be published, broadcast, rewritten or
	otherwise distributed without the prior written authority of The Lubrizol
	Corporation.

ACUTE TOXICITY - ORAL	
Test substance	2-Acrylamido-2-methylpropanesulfonic acid, sodium salt
CASRN:	5 165-97-g
Purity:	50% aqueous solution
Remarks	This substance is referred to as sodium AMPS@ in the test plan
	for the AMPS@ category
Method	OECD 401
Type:	Acute oral toxicity study in rats
GLP:	Yes
Year:	981
Species:	Rat
Strain:	Sprague-Dawley albino
Route of administration:	Oral
Dose levels:	1000, 2000, 4000, 8000 and 16000 mg/kg
Sex and number/group:	5 male rats per treatment group
Frequency of treatment:	Single oral gavage
Duration of test:	14 day observation period post-treatment
Control group:	No negative control group
Result	LD50 > 16000 mg/kg
Remark:	Five groups of five male rats of the outbred Sprague-
Kemark.	Dawley strain weighing between 200-300 grams were
	employed in this study. The rats were deprived of food but
	not water overnight prior to dosing. Each animal was
	weighed and given a single dose by direct administration of
	the experimental material in to the stomach by means of a
	syringe and dosing needle. The following dosages were
	1 , ,
	administered: 1000 mg/kg, 2000 mg/kg, 4000 mg/kg, 8000
	mg/kg and 16000 mg/kg. Following administration the
	animals were allowed food and water ad libitum for the 14-
	day observation period during which time the animals were
	observed for signs of toxicity and mortality. No
	unscheduled deaths were recorded and no unusual clinical
	or behavioral signs were observed in animals receiving
	dosages ranging from 1000-8000 mg/kg. Animals receiving
	16000 mg/kg appeared ruffled and lethargic within 3-4
	hours of test material administration, All animals appeared
	normal by day 5. No unscheduled deaths were recorded and
Dafawaraa	gross examination revealed no pathological findings. Summary of results of acute toxicology studies: OS48933E,
<u>Reference</u>	Biosearch Inc., 12/17/81.
Data Quality	Valid without restriction (Klimisch Code 1)
Other	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered
	trademark of The Lubrizol Corporation. The information contained in
	this robust summary may not be published, broadcast, rewritten or
	otherwise distributed without the prior written authority of The Lubrizol
	Corporation.

ACUTE TOXICITY - ORAL	
Test substance	2-Acrylamido-2-methylpropanesulfonic acid, ammonium
	salt
CASRN:	58374-69-9
Purity:	50% aqueous solution
Remarks	This substance is referred to as ammonium AMPS® in the test
	plan for the AMPS@ category
Method	OECD 401
Type:	Acute oral toxicity study in rats
GLP:	Yes
Year:	1993
Species:	Rat
Strain:	Sprague-Dawley albino
Route of administration:	Oral
Dose levels:	Limit study at 5000 mg/kg
Sex and number/group:	5 male and 5 female rats per treatment group
Frequency of treatment:	Single oral gavage
Duration of test:	14 day observation period post-treatment
Control group:	No negative control group
Result	LD50 > 5000 mg/kg
Rem ark	One group consisting of five male and five female rats of the Sprague-Dawley strain weighing between 200-300 grams were employed in this study. The rats were deprived of food but not water overnight prior to dosing. Each animal was weighed and given a single dose of 5000 mg/kg by direct administration of the experimental material in to the stomach by means of a syringe and dosing needle. Following test material administration the animals were allowed food and water ad Zibitum for the 14-day observation period during which time the animals were observed for signs of toxicity and mortality. There were no unscheduled deaths during the study. Clinical findings were limited to abnormal defecation (soft stool, diarrhea) for three rats and a single occurrence of wet yellow urogenital staining on the day of dosing. One male had dried red material around the nose on day 2. There were no other clinical findings. There were no remarkable changes or differences in body weight during the study. One male had mottled lungs at the terminal necropsy. There were no test material-related gross necropsy findings for any examined tissues at terminal necropsy.

Reference	Acute oral toxicity study of OS# 87613M in albino rats.
	WIL Research Laboratories, 12/1 5/93.
Data Quality	Valid without restriction – (Klimisch Code 1)
Other	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered trademark of The Lubrizol Corporation. The information contained in this robust summary may not be published, broadcast, rewritten or otherwise distributed without the prior written authority of The Lubrizol Corporation.

ACUTE TOXICITY - DERMAL		
Test substance:	2-Acrylamido-2-methylpropanesulfonic acid, ammonium	
	salt	
CASRN:	58374-69-9	
Purity:	50% aqueous solution ""	
Remarks	This substance is referred to as ammonium AMPS® in the test	
	plan for the AMPS@ category	
Method:	OECD 402	
Type:	Acute dermal toxicity in rabbits	
GLP:	Yes	
Year:	1996	
Species:	Rabbit	
Strain:	New Zealand albino	
Route of administration:	Single dose dermal application	
Dose levels:	2000 mg/kg limit test	
Sex and number/group:	5 male and 5 female rabbits per treatment group	
Frequency of treatment:	Single 24 hour dermal application	
Duration of test:	14 day observation period post-treatment	
Control group:	No negative control group	
Result	LD50 > 2000 mg/kg	
Remarks:	One group consisting of five male and five female albino	
	rabbits of the New Zealand strain weighing between 2000-	
	2500 grams were employed in this study. Each animal was	
	weighed and given a single dermal application (24-hour,	
	semi-occluded exposure) of test article at a dose level of	
	2000 mg/kg. Following administration the animals were	
	observed for 14-days for signs of toxicity and mortality.	
	There were no unscheduled deaths during the study. Two	
	rabbits had instances of soft stool on days 1 and 6, but this	
	finding was determined not to be related to the test material.	
	There were no other clinical findings. The test material	
	induced very slight-to-slight erythema on all animals. Three	
	rabbits had very slight edema. Desquamation was also	
	observed on three rabbits. There were no other dermal	
	findings. All edema subsided by day 2. All dermal irritation	
	completely subsided by day 11 or earlier. There were no	
	remarkable changes or differences in body weights. Upon	
	terminal necropsy, two rabbits displayed accessory splenic	
	tissue, a common congenital abnormality in New Zealand	
	white rabbits. Dark red lungs were noted in two animals.	
	There were no other remarkable findings.	
Reference	Acute dermal toxicity study of OS# 114454 in albino	
	rabbits. WIL Research Laboratories, 4/15/96.	
Data Ouality	Valid without restriction – (Klimisch Code 1)	

Other	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered	I
	trademark of The Lubrizol Corporation. The information contained in	l
	this robust summary may not be published, broadcast, rewritten or	l
	otherwise distributed without the prior written authority of The Lubrizol	ı
	Corporation.	l

:N VITRO GENETIC TOXIO	
Test substance	2-Acrylamido-2-methylpropanesulfonic acid
CASRN:	15214-89-8
Purity:	99.85%
Remarks	This substance is referred to as AMPS® acid in the test plan for the AMPS@ category
Method	OECD 471
Type:	Bacterial reverse mutation assay
Year:	1984
GLP:	Yes
System of testing:	S. typhimurium strains: TA98, TA100, TA1535, TA1537, TA1538
Concentration:	0, 30, 100, 300, 1000 and 3000 microgram/plate
Metabolic activation:	With and without
Results	Non-mutagenic
Remarks:	Concentrations for the mutagenicity assay were chosen on the basis of results from a range finding assay that showed the beginning of toxicity to be approximately 2000-6000 micrograms/plate. Thus, five concentrations of test material were prepared for use as described above. Each concentration was tested in duplicate in the referenced Salmonella strains, both in the presence and absence of a S9 rat liver metabolic activation system. Bacterial strains were checked the day of each assay to ensure that all five strains were sensitive to crystal violet (rfa mutation) and the TA98 and TAIOO contained the R-factor (resistance to ampicillin). The maximum amount of test material used (3000 microgram/plate) was toxic to all strains in the assay. No mutagenic response was seen for stains TA98, TA100, TA1535 or TA1537 in either the activated or non-activated assays. Non-activated test material did produce a small increase in the number of revertants per plate, however, this increase was deemed to be the result of an unusually low number of revertant colonies on the corresponding negative control plates. The mutagenicity test was repeated to confirm the previous observations. The known mutagens used in the positive control experiments (2-anthramine, sodium azide, 2-nitrofluorene or 9-aminoacridine depending of the bacterial strain) produced significant increases in the frequency of revertants (approximately 40-fold over the DMSO-containing vehicle control). In conclusion, the test material did not induced significant increases in mutations in strains of S. typhimurium, either in the presence or absence of metabolic activation, up to toxicity limits. Thus, within the limitations of this assay, the test material was considered to be non-mutagenic.

Reference	Salmonella/microsome mutagenesis assay on OS# 61349B.
	Bioassay Systems Corp., 4/10/84.
Data Quality	Valid without restriction — (Klimisch Code 1)
<u>Other</u>	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered trademark of The Lubrizol Corporation. The information contained in this robust summary may not be published, broadcast, rewritten or otherwise distributed without the prior written authority of The Lubrizol Corporation.

N VITRO GENETIC TOXIO	CITY
Test substance	2-Acrylamido-2-methylpropanesulfonic acid
CASRN:	15214-89-8
Purity:	99.85%
Remarks	This substance is referred to as AMPS@ acid in the test plan for the AMPS@ category
Method	OECD 47 1/472
Type:	Bacterial reverse mutation assay
Year:	1991
GLI	: Y
Type:	Bacterial reverse mutation assay
System of testing:	S. typhimurium strains: TA98, TA100, TA1535, TA1537, TA1538, E. coli WP2
Concentration:	0, 15, 50, 150, 500, 1500 and 5000 micrograms/plate
Metabolic activation:	With and without
Results	Non-mutagenic
Remarks:	Four strains of S. typhimurium and 1 strain of E. coli were
	used in the assays. The bacterial cultures were tested for
	genetic characterization (rfa mutation or ampicillin
	resistance) on the day of the assays. The test material was
	applied in an aqueous vehicle to bacteria at concentrations
	ranging from 15-5000 microgram/plate. Negative controls
	(sterile water or DMSO) or positive controls (2-
	aminoanthracene, 9-aminoacridine, sodium azide, N-ethyl-
	N'-nitro-N-nitrosoguanidine, 2-nitrofluorene depending on
	the bacterial strain and activation parameters) were used to
	verify the reliability of the assay. The metabolic activation
	system consisted of an \$9 microsomal fraction obtained
	from the liver harvested from rats 5 days following a single
	intraperitoneal injection of Aroclor 1254. The mean
	number of revertants per plate and the standard deviation
	was calculated for each concentration and strain. A test
	result was considered positive if for any strain, a significant
	increase over the negative control in the number of
	revertants per plate was observed as concentration-
	dependent; or after a two-fold increase when the
	background was 50 revertants per plate or greater; or after a
	three-fold increase when the background was between 10
	and 49 revertants per plate; or after a four-fold increase
	when the background was less than 10 revertants per plate.
	Each individual assay was performed in triplicate. The test
	substance was slightly toxic to all Salmonella strains at the
	highest dose used (5000 microgram/plate) both with and
	without metabolic activation. For all bacterial strains tested
	there was no significant increase in the number of revertants
	at any dose of test material when compared to the
	l · · · · · · · · · · · · · · · · · · ·

	corresponding negative solvent control. The entire assay was repeated and the results seen in the first experiment were confirmed. The positive and control solvent control for all experiments were within established historical ranges for each bacterial strain utilized. In conclusion, the test substance did not produce a significant increase in the number of revertants, with and without metabolic activation. Thus, at the concentrations tested and under the conditions of the assay, the test material was considered to			
Reference	be non-mutagenic. Evaluation of OS61 349H in a bacterial mutagenesis assay.			
<u>Nejerence</u>	A.D. Little Inc., 7/23/91.			
Data Quality	Valid without restriction - (Klimisch Code 1)			
Other	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered trademark of The Lubrizol Corporation. The information contained in this robust summary may not be published, broadcast, rewritten or otherwise distributed without the prior written authority of The Lubrizol Corporation.			

IN VITRO GENETIC TOXICITY				
Test substance	2-Acrylamido-2-methylpropanesulfonic acid			
CASRN:	15214-89-8			
Purity:	99.85%			
Remarks	This substance is referred to as AMPS® acid in the test plan for			
	the AMPS@ category			
<u>Method</u>	OECD 476			
Type:	Mammalian Cell Gene Mutation Test			
190 9000 10000 10000	: 1991			
GLP:	Y			
System of testing:	Chinese hamster ovary cells			
Concentrations:	Geometric increments from 130 – 4000 microgram/ml			
Exposure period:	16 hours			
Metabolic activati	on: Without			
Control and treatment:	The negative control was water vehicle and the positive			
	control was ethylmethanesulfonate			
Results	Non-mutagenic			
Remarks:	The objective of the study was to assess the ability of the			
	test material to induce mutations in CHO at the			
	hypoxanthine-guanine phosphoribosyltransferase (HGPRT)			
	locus. CHO cells obtained from the Oak Ridge National			
	Laboratory were maintained in Ham's nutrient F 12 medium			
	supplemented with 10% fetal bovine serum, 50 U/ml			
	penicillin, 50 microgram/ml streptomycin and 2 mM			
	glutamine. These mycoplasma-free cells were grown at			
	37°C in 5% CO2 and 95% relative humidity. For testing,			
	cells were seeded at a density of 5 x 10 ⁵ cells/100 mm tissue			
	culture plate, and 24 hours later were treated in triplicate			
	with either test material (400 mg/ml aqueous stock solution)			
	or quality control preparations. The negative control was			
	water vehicle and the positive control was			
	ethylmethanesulfonate (235 microgram/ml). Experimental			
	plates were cultured in the presence of non-activated test			
	material ranging from 130-4000 microgram/ml for 16 hours			
	After that time period, medium containing the test material			
	was removed, the cells detached under trypsin, washed and			
	sub-cultured for 9-12 days to allow phenotypic expression.			
	At the end of the phenotypic expression period, the cells			
	were again sub-cultured in hypoxanthine-free Ham's F12			
	medium containing 10% fetal bovine serum and 10 uM			
	thioguanine (five plates per test material concentration).			
	These plates were incubated for 7-9 days, at which time the			
	cells were fixed in methanol, stained in 5% Giemsa, dried			
	and the mutant colonies counted. The HGPRT mutation			
	frequency was calculated by dividing the total number of			
	mutant colonies by the total number of cells seeded per			

	culture (corrected for cloning efficiency). Preliminary range finding experiments revealed the test material to be toxic to CHO cells at concentrations of 2000 microgram/ml (50% cell loss) and 4000 microgram/ml (100% cell loss). The entire assay was repeated twice. At the concentrations tested, the assay material did not increase the frequency of mutant cells when compared to the negative vehicle control. In the first assay the mutation frequencies per 10 ⁶ cells exposed to test material ranged from 13.2 to 78.3 and in the second assay the frequencies resulting from test material application ranged from 17.5 to 47.0 per 10 ⁶ cells exposed. The mean mutation frequency for a comparable number of exposed cells exposed to water vehicle was 35.6 and 42.4, respectively. There was no statistically significant difference between the mutation frequencies at any dose of test material and the values obtained from the vehicle control (i.e., water). The positive control ethylmethanesulfonate produced mean mutation frequencies of 1308 and 241 per10 ⁶ cells exposed. The responses obtained from the negative and positive controls demonstrated that the system was capable of detecting mutagenic chemicals. Therefore, the experimental results indicate that the non-activated test material was non-mutagenic in CHO cells under the conditions of the assay.
Reference	CHO/HGRPT in vitro mammalian cell mutation assay without metabolic activation with OS 6 1349H. A.D. Little, Inc. 12/10/91.
Data Quality	Valid with restriction – (Klimisch Code 2) – The mutagenesis experiments performed with a metabolic activation system did not yield reliable results because the CHO cells did not grow. The assays were repeated, and the results were submitted in a separate report (see Mammalian Cell Gene Mutation Test below).
<u>Other</u>	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered trademark of The Lubrizol Corporation. The information contained in this robust summary may not be published, broadcast, rewritten or otherwise distributed without the prior written authority of The Lubrizol Corporation.

IN VITRO GENETIC TOXI	
Test substance	2-Acrylamido-2-methylpropanesulfonic acid
CASRN:	15214-89-8
Purity:	99.85%
Remarks	This substance is referred to as AMPS® acid in the test plan for
	the AMPS@ category
<u>Method</u>	OECD
Type:	Mammalian Cell Gene Mutation Test
Year:	1992 nr - 1-4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1
GLP:	Y No descriptions
System of testing:	Chinese hamster ovary cells
Concentrations:	Geometric increments from 1 O-5000 microgram/ml
Exposure period:	19 hours
Metabolic activation:	With and without
Control and treatment:	The negative control was water vehicle and the positive
	controls were ethylmethanesulfonate (235 microgram/ml) in
	the non-activated experiments and dimethylnitrosamine
	(100 microgram/ml) in the activated experiments
Results	Non-mutagenic
Remarks:	The objective of the study was to assess the ability of the
Remarks.	test material to induce mutations in CHO at the
	hypoxanthine-guanine phosphoribosyltransferase (HGPRT)
	locus. CHO cells obtained from the Oak Ridge National
	Laboratory were maintained in Ham's nutrient F12 medium
	supplemented with 5% fetal bovine serum, 50 U/ml
	penicillin, 50 microgram/ml streptomycin and 2 mM
	glutamine. These Mycoplasma-free cells were grown at
	37°C in 5% CO2 and 90% relative humidity. For testing,
	cells were seeded at a density of 1 x 10^6 cells/100 mm tissue
	culture plate, and 24 hours later were treated in duplicate
	with either test material (400 mg/ml aqueous stock solution)
	or quality control preparations. CHO cells were assayed in
	the absence and in the presence of Aroclor 1254-induced
	male Sprague-Dawley rat liver homogenate supplemented
	with cofactors (S9). The negative control was water vehicle
	and the positive controls were ethylmethanesulfonate (235
	microgram/ml) in the non-activated experiments and
	dimethylnitrosamine (100 microgram/ml) in the activated
	experiments. Assay plates were cultured in the presence of
	activated and non-activated test material (500 mg/ml
	aqueous stock solution) ranging from 1 O-5000
	microgram/ml for 19 hours. After that time period, medium
	containing the test material was removed, the cells detached
	under trypsin, washed and sub-cultured for 7 days to allow
	phenotypic expression. At the end of the phenotypic
	expression period, the cells were again sub-cultured in

hypoxanthine-free Ham's F 12 medium containing 5% fetal boyine serum and 10 microM thioguanine (five plates per test material concentration). These plates were incubated for 3 days, at which time the cells were fixed in ethyl alcohol, stained in a dilute solution of crystal violet, dried and the mutant colonies counted. The HGPRT mutation frequency was calculated by dividing the total number of mutant colonies by the total number of cells seeded per culture (corrected for cloning efficiency). A test article was considered to be a mutagen if it; a) exhibited a dosedependent increase in the average mutant frequencies (leastsquares method of linear regression analysis; p < 0.05), with at least one concentration producing a statistically significant increase in average mutant frequency that was greater than or equal to three times the average mutant frequency of the pooled concurrent negative controls, or b) represented a net increase of 20 mutants per 10⁶ clonable cells. Preliminary range finding experiments revealed the test material to be toxic to CHO cells at concentrations > 3000 microgram/ml with and without metabolic activation. At the concentrations tested, the assay material did not increase the frequency of mutant cells when compared to the negative vehicle control. In the first experiment, the mutant frequencies of the negative control cultures ranged from 10.7 to 17.3 (mean 14.2, s.d. 6.9) survivors per 10° clonable cells. The cultures treated the test material (with and without metabolic activation) ranged from 4.6 to 33.0 mutants per 10⁶ clonable cells. There were no statistically significant or dose-dependent increases in the average mutant frequencies of the cultures treated with either activated or non-activated test material. The test material was re-evaluated in a confirmatory assay under identical conditions. In these experiments, the average mutant frequencies of the negative cultures ranged from 4.5 to 33.9 (mean 19.2, s.d. 15.8) mutants per 10⁶ clonable cells while those of the cells treated with activated or non-activated test material ranged from <2.5 to 29.1 mutant per 10⁶ clonable cells. Again, there were no statistically significant or dosedependent increases in the average mutant frequencies of the cultures treated with either activated or non-activated test material. The reliability of the assay for detecting mutagens was demonstrated by the observation that average mutant frequencies for the activated and non-activated positive controls were 334.5 and 275.0 survivors per 10⁶ clonable cells. These results indicate that the test material, whether activated or non-activated, was non-mutagenic in CHO cells under the conditions of the assay.

<u>Reference</u>	CHO/HPRT Mammalian Cell Forward Mutation Assay on OS 6 13495. Pharmakon Research International, Inc., 2/7/92
Data Quality	Valid without restriction - (Klimisch Code 1)
Other	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered trademark of The Lubrizol Corporation. The information contained in this robust summary may not be published, broadcast, rewritten or otherwise distributed without the prior written authority of The Lubrizol Corporation.

IN VITRO GENETIC TOXICITY				
Test substance	2-Acrylamido-2-methylpropanesulfonic acid			
CASRN:	15214-89-8			
Purity:	99.85%			
Remarks	This substance is referred to as AMPS® acid in the test plan for the AMPS' category			
Method	OECD 473			
Type:	Mammalian cytogenetic test			
Year:	1991			
GLP:	Y			
System of testing:	Chin&e hamster ovary cells			
Concentrations:	6 geometric increments ranging from 0 to approximately 6000 microgram/ml (dependent on exposure period and activation treatments)			
Exposure period:	10 and 20 hours			
Metabolic activation:	With and without			
Controls and treatment:	Water vehicle as a negative control, and mitomycin C or cyclophosphamide as a positive controls			
Results	Clastogenic after metabolic activation			

Non-Activated			Activated				
Time	Treatment	Dose	% cells with	Time (hrs)	Treatment	Dose	% cells with
(hrs)		(ug/ml)	aberrations			(ug/ml)	aberrations
10	Water		4.5	10	Water		2.7
	OS61349H	510	5.5	3.00	OS61349H	177	5.6
		1530	3.0			539	7.7*
		5100	7.0			1790	5.5
	Mitomycin C	0.3	36.0			3530	10.5*
20	Water		2			5890	NR
	OS61349H	344	2		Cyclophosphamide	50	46.2
		1150	1.5	10 (repeat)	Water		4.0
		3440	2		OS61349H	151	3.0
		5730	NR			505	6.3
	Mitomycin C	0.3	76			1510	6.0
						3010	10.3*
						5010	4.7
					Cyclophosphamide	50	40.0
				20	Water		4.5
						189	5.5
* = p <	< 0.05 compared to	negative co	ontrol			630	1.5
NR =	Aberrations not sc	ored due to	cytotoxicity			1890	6.5
CT = c	evidence of cytoto:	xicity			The state of the s	6300	51.0* CT
					Cyclophosphamide	50	96
				20 (repeat)	Water		1.5
						1010	4.5
						2010	3.5
						3010	3.5
						4010	1.0
			- Indiana i			5010	6.0*
					Cyclophosphamide	50	68

Remarks:

Chinese hamster ovary (CHO) cells (Merck Institute for Therapeutic Research) were maintained in McCoy's 5A nedium containing 10% fetal bovine serum, 50 units/ml penicillin, 50 microgram/ml streptomycin, 2mM glutamine, ouffered with NaHC03, and incubated under 95% relative humidity at 37°C and 5% CO2. The cells were determined to be free from mycoplasma contamination. Non-activated assay: CHO cells were seeded at a density of 5 x 10⁵ in 25 cm² culture flasks. The following day, the cells were exposed to media containing the test material (50% aqueous solution) at approximately 153,306, 510, 1020, 1530, 3060 or 5 100 microgram/ml for a duration of either 10 or 20 hours. Separate flasks were prepared containing either water vehicle as a negative control, or 0.3 microgram/ml mitomycin C as a positive control. All test sample concentrations and controls were tested in duplicate flasks. Two hours prior to harvest, vinblastine was added to 0.26 microgram/ml to arrest the cells in metaphase. At the end of this period, metaphase cells were collected with trypsin and concentrated by centrifugation. The cells were then washed in PBS, lysed in hypotonic KCL and sodium citrate and fixed in methanol:acetic acid (3:1). Drops of each lysate were dried on glass slides and stained with 5% Giemsa. Activated assay: CHO cells prepared similarly were exposure to test or control material for two hours in the presence of \$9 microsomal fractions were prepared from the liver harvested from rats treated 5 days earlier with a single injection of Aroclor 1254 (500 mg/kg). In the activated experiments, cyclophosphamide at 50 microgram/ml was used as a positive control. Following this exposure, the cells were washed, re-incubated to complete the 10 or 20 hour time period and treated as described above. Mitotic index was determined on a minimum of 500 metaphase cells exposed to test material. At least 100 metaphase cells from a minimum of three selected test sample concentrations were analyzed for chromosomal aberrations. The data was analyzed using the statistical methods described by Margolin et al., Environ. Mutagen 8: 183,204, 1986. Nonactivated results (Table 1): The test material was toxic to CHO cells at 5730 microgram/ml in the 20-hour nonactivated assay, whereas in the lo-hour assay, no toxicity was observed. In the 20-hour non-activated study, the mitotic index (%) averaged 18.4 and 15.2 at 344 and 1150 micrograms/ml, respectively. At 3440 micrograms/ml the mitotic index fell to 9.5%. The mitotic index for pure water solvent averaged 15.9%. In the 1 O-hour non-activated study, the mitotic index (%) averaged 4.5 and 5.6 at 510 and 1530

	micrograms/ml, respectively. At 5 100 micrograms/ml the mitotic index fell to 3.4%. The mitotic index for pure water solvent averaged 4.5%. None of the test material concentrations evaluated (344-2440 microgram/ml) caused a statistically significant increase in the number of chromosomal aberrations compared to vehicle controls after either exposure period. Activated results (Table 1): The test material was also assayed 10 and 20 hours after microsomal activation. Toxicity was observed at the highest concentrations tested (approximately 6000 microgram/ml) after 10 and 20 hours. The mitotic indices (%) for the 10-hour activated assay were as follows: Study 1'— Pure water solvent (1 1), 177 microgram/ml (8.9), 589 microgram/ml (9.5), 1790 microgram/ml (14.5), 3530 microgram/ml (7.9) and 5890 microgram/ml (0.2). Study 2— Pure water solvent (8.1), 151 microgram/ml (5.0), 505 microgram/ml (4.9), 1510 microgram/ml (3.6), 3010 microgram/ml (5.6) and 5010 microgram/ml (6.4). The mitotic indices (%) for the 20-hour activated assay were as follows: Study 1— Pure water solvent (10.6), 189 microgram/ml (10.2), 630 microgram/ml (19.5), 1890 microgram/ml (7.5), and 6300 microgram/ml (2.3). Study 2— Pure water solvent (5.3), 1010 microgram/ml (6.0). The activated test material produced statistically significant chromosomal damage in CHO cells after 10 hours at approximately 3 000 micrograms/ml and after 20 hours at concentrations of 5010 and 6300 microgram/ml. Based upon these results, the Study Director concluded that the activated test material was clastogenic in Chinese hamster ovary cell culture. However, this finding is confounded by the absence of a dose-response effect, lack of a time-response effect, lack of reproducibility between repeat experiments and the presence of extensive cytotoxic damage concurrent with observed chromosomal damage for one scored time point.
Reference	The Evaluation of OS 61349H in the In Vitro Chromosomal
Data Quality	Aberration Assay. A.D. Little, Inc. 1 1/4/91. Valid without restriction – (Klimisch Code 1)
Data Quality Other	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered
<u> </u>	trademark of The Lubrizol Corporation. The information contained in this robust summary may not be published, broadcast, rewritten or otherwise distributed without the prior written authority of The Lubrizol Corporation.

IN VIVO GENETIC TOXICITY			
Test substanc:	2-Acrylamido-2-methylpropanesulfonic acid		
CASRN:	15214-89-8		
	99.85%		
Remarks	1		
	the AMPS@ category		
Method	OECD 475		
Type:	Bone marrow cytogenetics test		
Year:	1992		
GLP:	Yes		
Species:	Rat		
Strain:	Sprague-Dawley		
Sex:	5 male and 5 female rats per treatment group		
Route:	Oral gavage		
Exposure period:	6, 18 and 24 hours		
Doses:	150,500 and 1500 mg/kg		
Controls and treatment:	Concurrent vehicle negative control (water), positive		
	control animals treated with cyclophosphamide		
Results:	Non-clastogenic		

Male				Female			
Γime (hrs)	Treatment	Dose (mg/kg)	% cells with aberrations	Time (hrs)	Treatment	Dose (mg/kg)	% cells with aberrations
5	Vehicle		3.2	6	Vehicle		2.0
	OS61349J	150	0.8		OS61349J	150	2.0
		500	1.6			500	0.8
		1500	1.2			1500	1.2
18	Vehicle	****	0.4	18	Vehicle		0.4
	OS61349J	150	0.4		OS61349J	150	1.2
•		500	0.4			500	0.8
!4	Cyclophosphamide	1500 30	0.8 18.8	24	Cyclophosphamide	1500 30	1.2 19.2
	Vehicle		0.8		Vehicle		1.6
	OS61349J	150	0.0	T	OS61349J	150	1.2
		500	0.8			500	2.4
		1500	0.8	1		1500	0.8

Remarks	The test material solution was administered to 8-9 week old
	test animals by oral gavage at a single dose of 150, 500 or
	1500 mg/kg using plastic syringes and stainless steel
	intubation needles. The animals were not fasted prior to
	dosing. Six males and six females were dosed per group to
	ensure that acceptable metaphase cells could be obtained
	from 5 animals per group. Fifty metaphase cells from each
	of 5 animals per test condition were analyzed when
	possible. The total number of cells analyzed per dose at
	each exposure period equaled 250. Exposure time included
	6, 18 and 24 hours. Clinical signs observed in the animals

Remarks	The test material solution was administered to 8-9 week old test animals by oral gavage at a single dose of 150,500 or 1500 mg/kg using plastic syringes and stainless steel intubation needles. The animals were not fasted prior to dosing. Six males and six females were dosed per group to ensure that acceptable metaphase cells could be obtained from 5 animals per group. Fifty metaphase cells from each of 5 animals per test condition were analyzed when possible. The total number of cells analyzed per dose at each exposure period equaled 250. Exposure time included 6, 18 and 24 hours. Clinical signs observed in the animals dosed at 1500 mg/kg included increased respiratory rate (50%), watery feces (28%), soft feces (17%), and wheezing (1%). Mean body weights of the dose groups were not significantly different from the vehicle control group at any time point. As is illustrated in Table 1 above, the test article did not produce statistically significant increases (p<0.05) in the percentage of cells with aberrations at any dose, time period or for either sex, compared to control values. Positive control animals treated with cyclophosphamide (30 mg/kg) demonstrated an increase in the frequency of damaged cells which was statistically significant at the study threshold of p < 0.05. Thus, the positive and negative controls demonstrated the reliability of the assay to detect chromosomal aberrations. The percentage of cells with chromosomal aberration were analyzed by the statistical methods described by Margolin et al., Environmental Mutagenesis, Volume 8, 1986. These results indicate that the test material was non-clastogenic in rat bone marrow cells under the conditions of the assay
	cells under the conditions of the assay.
Reference	Evaluation of OS6 1348J in the in vivo chromosomal
	aberration assay. A.D. Little Inc., 1/7/92
Data Quality	Valid without restriction – (Klimisch Code 1)
Other	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered trademark of The Lubrizol Corporation. The information contained in this robust summary may not be published, broadcast, rewritten or otherwise distributed without the prior written authority of The Lubrizol Corporation.

IN VIVO GENETIC TOXICITY				
Test substance	2-Acrylamido-2-methylpropanesulfonic acid, ammonium			
	salt			
CASRN:	58374-69-g'			
'Purity:	50% aqueous solution			
Remarks	This substance is referred to as ammonium AMPS@ in the test plan for the AMPS@ category			
Method	OECD 474			
Type:	Micronucleus assay			
Year	: 1996			
GLP:	Y			
Species:	Mouse			
Strain:	Crl:CD-1 (ICR)BR			
Sex:	Five male and five female mice/dose/time_period.			
Route:	Intraperitoneal			
Exposure period:	24, 48 and 72 hours "			
Doses:	175,875 and 1750 mg/kg			
Controls and treatment:	Concurrent vehicle negative control (water), positive			
	control animals treated with cyclophosphamide			
Results	The test material was considered to be non-clastogenic in			
	the mouse micronucleus test, under the conditions and			
	according to the criteria of the test protocol.			

Male				Female			
Time (hrs)	Treatment	Dose (mg/kg)	% MPCE Frequencies	Time (hrs)	Treatment	Dose (mg/kg)	% MPCE Frequencies
24	Vehicle		0.03	24	Vehicle		0.03
	OS114454	175	0.07		OS114454	175	0.08
		875	0.03			875	0.04
		1750	0.02		100	1750	0.05
	Cyclophosphamide	60	2.24		Cyclophosphamide	60	1.39
48	Vehicle		0.04	48	Vehicle		0.05
	OS114454	175	0.01		OS114454	175	0.08
		875	0.04			875	0.03
		1750	0.03			1750	0.07
72	Vehicle		0.03	72	Vehicle		0.05
	OS114454	175	0.04		OS114454	175	0.05
		875	0.07			875	0.02
		1750	0.07			1750	0.03

Table 3.	
Remarks	The test material solution was administered to ~ 7 week old
	test animals by intraperitoneal injection at a single dose of
	175, 875 or 1750 mg/kg at a constant volume of 10 ml/kg.
	Nine groups of mice were used to evaluate the induction of
	micronuclei (five male and five female mice/dose/time
	period). Negative control (deionized water vehicle) and
	positive control (cyclophosphamide; 60 mg/kg) were
	administered concurrently for sacrifice at all three time
I	1

PCE/NCE Rat	ios	
	-	
Dose	Time	Ratio Mean
(mg/kg)	(hours)	(sd)
H2O	24	1.217 (0.3)
175	24	1.265 (0.12)
875	24	1.294 (0.17)
1750	24	1.256 (0.19)
H2O	48	1.374 (0.22)
175	i .	1.369 (0.31)
875	48	1.317 (0.23)
1750	48	1.422 (0.24)
H2O	72	1.281 (0.11)
175	72	1.266 (0.20)
875	72	1.364 (0.27)
1750	72	1.133 (0.25)
Table 4.	ļ	

Remarks

The test material solution was administered to ~ 7 week old est animals by intraperitoneal injection at a single dose of 175, 875 or 1750 mg/kg at a constant volume of 10 ml/kg. Nine groups of mice were used to evaluate the induction of micronuclei (five male and five female mice/dose/time period). Negative control (deionized water vehicle) and positive control (cyclophosphamide: 60 mg/kg) were administered concurrently for sacrifice at all three time points. Groups were sacrificed after 24, 48 and 72 hours, with the exception of the control groups, which were sacrificed at 24 hours. Bone marrow slides were prepared, stained and scored for the number of micronucleated polychromatic erythrocytes (MPCE) in a total of 2000 polychromatic erythrocytes (PCE) per mouse. The ratio of polychromatic to normochromatic erythrocytes (PCE/NCE ratio) was also determined for each mouse as an index of toxicity.

The frequency of MPCE in each test group was compared to its respective negative control group using a one-tailed Student's t-test with a post hoc Cochran-Armitage test for possible dosing trends. Analysis of the by-sex data indicated that the test material did not induce any statistically significant or dose-dependent increases in MPCE frequencies at any harvest time evaluated, as compared to concurrent negative controls (Table 3). However, a single isolated increase in the frequency of MPCEs (combinedsex) was observed in mice treated with the test material at a dose of 175 mg/kg and harvested at 24 hours (p < 0.05). Since this increase was within the historical negative control range as well as the acceptable negative control values for this assay, this isolated increase in MPCE frequency was considered a statistical aberration due to a random fluctuation of the spontaneous MPCE frequency. In addition, the test material did not induce any statistically significant depressions in PCE/NCE ratios compared to concurrent negative controls (Table 4). MPCE frequencies for all negative control groups were within acceptable negative ranges, and the cyclophosphamide positive control groups produced statistically significant increases in MPCE frequencies (combined- and by-sex; p < 0.01). Cyclophosphamide-treated animals experienced significant depressions in PCE/NCE ratios (p < 0.05). In conclusion, the test material was considered to be non-clastogenic in the mouse micronucleus test, under the conditions and according to the criteria of the test protocol.

Reference	In vivo micronucleus test with OS# 114454 in mouse bone marrow erythropoietic cells. Pharmakon USA, 7/3/96.
Data Quality	Valid without restriction - (Klimisch Code 1)
<u>Other</u>	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered trademark of The Lubrizol Corporation. The information contained in this robust summary may not be published, broadcast, rewritten or otherwise distributed without the prior written authority of The Lubrizol Corporation.

REPEAT DOSE TOXICITY	1
Test substance	2-Acrylamido-2-methylpropanesulfonic acid, ammonium
	salt
CASRN:	58374-69-9
Purity:	58.4% aqueous solution
Remarks	This substance is referred to as ammonium AMPS @ in the test plan for the AMPS ® category
Method	OECD 407
Type: Year:	Repeated dose oral toxicity in rats 1995
GLP:	Y
Species:	Rat
Strain:	Sprague-Dawley [Crl:CD (SD)BR] 44 days old'at initiation of dosing
Sex:.	10 male and 10 female rats per group
Route of Administration:	Oral gavage
Exposure Period:	28 days
Frequency of Treatment:	7 days/week
Post-exposure observation	14 days
period:	
Dose:	0, 50, 150,400 or 1000 mg/kg
Control group:	Concurrent negative control group treated with water
NOEL:	1000 mg/kg/day
Results	Analysis of the test material confirmed the homogeneity and stability of the sample preparations. All animals survived throughout the study. With the exception of a single high dose male, there were no remarkable clinical observations resulting from oral administration of the test material. One male receiving 1000 mg/kg/day exhibited a number of adverse signs (lethargy, emaciation, watery stool, yellow ano-genital staining, and decreased fecal volume) during the first week of the study but recovered by the end of week 2. No unusual postmortem findings were seen in this particular animal at study termination. Mean body weights and body weight gains for the 1000 gm/kg/day male group were slightly lower than control values at week 1 (not statistically significant). Values for the control and treated groups of males were comparable from weeks 2 through 4. Body weight values for control and treated females were comparable throughout the study. Food consumption in the male 1000 mg/kg/day group was transiently lower during week 1. Values in subsequent weeks were similar to, or higher than, control values. No effect on food consumption was seen in with any other dose either in the male or female groups. No effects of test material administration on

<u>, </u>	
Reference	hematology values were evident after four weeks of treatment or after the 2-week treatment-free recovery period (including but not limited to hemoglobin concentration, hematocrit, RBC count, platelet count, MCV, MCH, MCHC, white cell differential, PTT, aPTT, RBC morphology). No effects of test material administration on clinical chemistry indices were evident during the treatment or recovery phases of the study (including but not limited to electrolytes, liver enzymes, plasma proteins, serum lipids, glucose, creatinine and BUN). Urinalyses were unremarkable (i.e., protein, glucose, ketone, occults blood, pH, bilirubin, urobilinogen, appearance, specific gravity). No effects of test material administration were observed on organ weights (i.e., adrenal glands, brain, kidneys, liver, ovaries, testes) for any dose, sex or phase of the study. None of the macroscopic findings in rats sacrificed at the end of the treatment and post-treatment recovery periods were considered to be related to treatment with the test material. No test material-related changes in microscopic findings on 29 various organs or tissues were observed for any group. Mean values of all dose groups were compared to the mean value for the control group at each time interval. Statistical evaluation was made by the appropriate one way analysis of variance technique followed by a post-hoc comparison procedure (e.g., Dunnett's test or Kruskal-Wallis test). Oral gavage administration of the test material to rats at doses of 50, 150,400 and 1000 mg/kg/day produced no significant toxicity at any dose level. Therefore, under the conditions of this study, the No Observed Effect Level (NOEL) was determined to be 1000 mg/kg/day. A 4-week Toxicity Study of OS 14454 in the Rat via Oral
Reference	A 4-week Toxicity Study of OS 14454 in the Rat via Oral
	Gavage Administration Followed by a 2-week Recovery Period. Huntingdon Life Sciences, 7/9/96.
Data Quality	Valid without restriction – (Klimisch Code 1)
Other	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered trademark of The Lubrizol Corporation. The information contained in this robust summary may not be published, broadcast, rewritten or otherwise distributed without the prior written authority of The Lubrizol Corporation.

REPRODUCTION TOXICIT	Y
rest substance:	2-Acrylamido-2-methylpropanesulfonic acid, ammonium
	salt
CASRN:	58374-69-9
Purity:	50% aqueous solution
Remarks	This substance is referred to as ammonium AMPS@ in the test plan for the AMPS@ category
Method	OECD 421
Type:	Repeated dose oral reproductive/developmental toxicity
	screen in rats
Year:	2000
GLP:	Î I
Species:	Rat
Strain:	Sprague-Dawley [Crl:CD (SD)BR] - Approximately nine weeks of age at initiation of the study
Sex:	12 male and 12 female rats per group
Route of Administration:	Oral gavage
Frequency of Treatment:	7 days/week
Dose:	0, 100, 500, or 1000 mg/kg
Control group:	Concurrent with water vehicle
Pre-mating exposure period for males:	14 days
Pre-mating exposure period for females:	14 days
Reproductive and	$\overline{F0}$ 'g&&&ion NOEL = $\overline{1000}$ mg/kg/day
Developmental NOEL:	F 1 generation NOEL = 1000 mg/kg/day
Remarks	Chemical analyses demonstrated that the test article was
	homogenous and stable at the concentrations used in the
	study. Dosing preparations were administered by oral gavage, as a single daily dose to FO males and females
	beginning two weeks prior to mating. The FO males were
	dosed for approximately seven weeks, including the two
	weeks prior to mating, during mating and through post-
	mating. The FO females were dosed throughout the study,
	including the two weeks prior to mating, during mating,
	during gestation, and following parturition. Following 14
	days of treatment with test material or vehicle control, each
	FO female was cohabitated with a single FO male randomly
	selected from the same treatment group. The day of
	confirmed copulation was designated as day 0 of gestation
	and the female was returned to its cage. If no evidence of
	copulation was observed after the 14 day mating period, the
	female was separated from the male and the mating phase
	was concluded. At the termination of the study periods, all surviving FO males and females were euthanized in a

humane fashion and subjected to gross necropsy examination. The FO males were euthanized after approximately seven weeks of treatment. FO females that underwent parturition were euthanized on lactation day 4. F0 females that failed to deliver were euthanized 25 days after evidence of mating. FO females with no evidence of rnating were euthanized 25 days after completion of the rnating period. The necropsy examination on FO males and females included evaluation of the external surfaces of the body, all orifices, and the cranial, thoracic, abdominal and pelvic cavities and their contents. Uterine contents were examined and the number of implantation sites and number of corpora lutea (per ovary) were recorded. Uteri with no macroscopic evidence of implantation were opened and placed in 10% aqueous ammonium sulfide solution for detection of early embryo lethality. Testes of all FO males were preserved in Bouin's fixative. Gross lesions, ovaries, prostate, epididymides, seminal vesicles uterus and vagina from all FO animals were preserved in formalin for future histopathological examination. Statistical analysis was performed using ANOVA with Dunnett's post-hoc test, Chi-square test, and Mann-Whitney U test where appropriate for each specific endpoint. Analytical chemistry results indicated that the test material was homogenous and stable at the concentrations used in the study. Subchronic effects: Oral administration of the test material at doses of 100,500 and 1000 mg/kg/day had no effect on FO survival, and there were no remarkable clinical observations noted during the study. Reproductive Indices, Precoital Intervals and Gestation Lengths: There were no statistically significant or toxicologically meaningful differences in copulation or fertility indices among the groups. The copulation index was 100% in the control and the 1000 mg/kg/day groups, and 91.7% in the 100 and 500 mg/kg/day groups. The fertility index was 100% in the control, 100 and 1000 mg/kg/day groups, and 8 1.8% in the 500 mg/kg/day. No statistically significant differences were observed in group mean precoital intervals or gestation lengths. Mean precoital intervals in the control, 100, 500 and 1000 mg/kg/day groups were 1.5, 2.8, 3.5 and 2.6 days, respectively. Mean gestation lengths in the control, 100, 500 and 1000 mg/kg/day groups were 22.1, 22.0, 21.8 and 22.1 days, respectively. FO Gross Necropsy Observations: Gross necropsy finding were generally unremarkable. When anomalies were observed, they were of low incidence, randomly distributed among the groups, and were not considered to be treatment related. FO Organ Weights:

	<u>Γhere</u> were no statistically significant or toxicologically
	neaningful differences in absolute or relative testes and
	epididymides weights between the control and test material-
	reated groups. FO Histopathology: Histopathological
	examination of the testes, ovaries and epididymides from
	control and high-dose rats did not reveal any test material-
	-elated microscopic changes. FO Implantation and
	k-e/Post-Implantation Loss: There were no statistically
	significant or toxicologically meaningful differences
	between control and test material-treated groups with
	respect to corpora lutea counts, implantation scar counts,
	mean number of live pups, or pre- or post-implantation loss.
	F1 Pup Viability: There were no toxicologically
	meaningful differences with respect to F 1 pup viability,
	number of litters in each group with live offspring, mean
	live litter size or pup sex ratios. The incidence of dead pups
	on lactation day 0 was slightly higher (statistically
	significant) in the 500 mg/kg/day group. This difference
	was not considered toxicologically significant since a dose-
	response pattern was not demonstrated (i.e., the incidence of
	dead pups was comparable between the vehicle control and
	the 1000 mg/kg/day groups). F1 Pup Observations during
	Lactation: F1 pup observations during lactation were
	generally unremarkable with any individual findings
	randomly distributed among the groups and without dose-
	responsive pattern. F1 Pup Body Weights during
	Lactation: There were no statistically significant or
	toxicologically meaningful differences in F1 pup body
	weights during lactation. F1 Pup Gross Necropsy
	Observations: Among the F1 pups found dead or
	euthanized as scheduled on lactation day 4, gross necropsy
	did not reveal any findings which would indicate a
	relationship to treatment with the test material. The most
	notable gross observation in pups found dead on lactation
	day 0 consisted of atelectasis and absence of milk in the
	stomach, indicating that these pups were likely stillborn.
	Other necropsy findings tended to be of low incidence and
	randomly distributed among the groups. There were no
	indications of treatment-related developmental effects.
Conclusion	The Study Director assigned a dosage level of 1000
	mg/kg/day as the no observed effect level (NOEL) for this
	reproduction and developmental screening study in rats.
<u>Reference</u>	An oral (gavage) reproduction/developmental toxicity
	screening study in Sprague-Dawley rats with OS#132086.
	Springbom Laboratories Inc., 3/15/00.
Data Quality:	Valid without restriction – (Klimisch Code 1)

Other	Copyright 2000 The Lubrizol Corporation. AMPS® is a registered
	trademark of The Lubrizol Corporation. The information contained in
	this robust summary may not be published, broadcast, rewritten or
	otherwise distributed without the prior written authority of The Lubrizol
	Corporation.